Tuesday, 18 December 2018

Big Data in the Automotive Industry by Players, Regions, Product Types & Applications 2017-2030

ResearchMoz presents professional and in-depth study of "Big Data in the Automotive Industry: 2017 - 2030 - Opportunities, Challenges, Strategies & Forecasts".

“Big Data” originally emerged as a term to describe datasets whose size is beyond the ability of traditional databases to capture, store, manage and analyze. However, the scope of the term has significantly expanded over the years. Big Data not only refers to the data itself but also a set of technologies that capture, store, manage and analyze large and variable collections of data, to solve complex problems.

Get PDF for more Professional and Technical insights @ https://www.researchmoz.us/enquiry.php?type=S&repid=1170819

Amid the proliferation of real-time and historical data from sources such as connected devices, web, social media, sensors, log files and transactional applications, Big Data is rapidly gaining traction from a diverse range of vertical sectors. The automotive industry is no exception to this trend, where Big Data has found a host of applications ranging from product design and manufacturing to predictive vehicle maintenance and autonomous driving.

SNS Research estimates that Big Data investments in the automotive industry will account for over $2.8 Billion in 2017 alone.  Led by a plethora of business opportunities for automotive OEMs, tier-1 suppliers, insurers, dealerships and other stakeholders, these investments are further expected to grow at a CAGR of approximately 12% over the next three years.

The “Big Data in the Automotive Industry: 2017 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of Big Data in the automotive industry including key market drivers, challenges, investment potential, application areas, use cases, future roadmap, value chain, case studies, vendor profiles and strategies. The report also presents market size forecasts for Big Data hardware, software and professional services investments from 2017 through to 2030. The forecasts are segmented for 8 horizontal submarkets, 4 application areas, 18 use cases, 6 regions and 35 countries.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.

The report covers the following topics:

    Big Data ecosystem
    Market drivers and barriers
    Enabling technologies, standardization and regulatory initiatives
    Big Data analytics and implementation models
    Business case, key applications and use cases in the automotive industry
    30 case studies of Big Data investments by automotive OEMs and other stakeholders
    Future roadmap and value chain
    Company profiles and strategies of over 240 Big Data vendors
    Strategic recommendations for Big Data vendors, automotive OEMs and other stakeholders
    Market analysis and forecasts from 2017 till 2030

View Complete TOC with tables & Figures @ https://www.researchmoz.us/big-data-in-the-automotive-industry-2017-2030-opportunities-challenges-strategies-forecasts-report.html/toc

Forecast Segmentation

Market forecasts are provided for each of the following submarkets and their subcategories:

Hardware, Software & Professional Services

    Hardware
    Software
    Professional Services

Horizontal Submarkets

    Storage & Compute Infrastructure
    Networking Infrastructure
    Hadoop & Infrastructure Software
    SQL
    NoSQL
    Analytic Platforms & Applications
    Cloud Platforms
    Professional Services

Application Areas

    Product Development, Manufacturing & Supply Chain
    After-Sales, Warranty & Dealer Management
    Connected Vehicles & Intelligent Transportation
    Marketing, Sales & Other Applications

Use Cases

    Supply Chain Management
    Manufacturing
    Product Design & Planning
    Predictive Maintenance & Real-Time Diagnostics
    Recall & Warranty Management
    Parts Inventory & Pricing Optimization
    Dealer Management & Customer Support Services
    UBI (Usage-Based Insurance)
    Autonomous & Semi-Autonomous Driving
    Intelligent Transportation
    Fleet Management
    Driver Safety & Vehicle Cyber Security
    In-Vehicle Experience, Navigation & Infotainment
    Ride Sourcing, Sharing & Rentals
    Marketing & Sales
    Customer Retention
    Third Party Monetization
    Other Use Cases

Regional Markets

    Asia Pacific
    Eastern Europe
    Latin & Central America
    Middle East & Africa
    North America
    Western Europe

Country Markets

    Argentina, Australia, Brazil, Canada, China, Czech Republic, Denmark, Finland, France, Germany,  India, Indonesia, Israel, Italy, Japan, Malaysia, Mexico, Netherlands, Norway, Pakistan, Philippines, Poland, Qatar, Russia, Saudi Arabia, Singapore, South Africa, South Korea, Spain, Sweden, Taiwan, Thailand, UAE, UK,  USA

Key Questions Answered

The report provides answers to the following key questions:

    How big is the Big Data opportunity in the automotive industry?
    How is the market evolving by segment and region?
    What will the market size be in 2020 and at what rate will it grow?
    What trends, challenges and barriers are influencing its growth?
    Who are the key Big Data software, hardware and services vendors and what are their strategies?
    How much are automotive OEMs and other stakeholders investing in Big Data?
    What opportunities exist for Big Data analytics in the automotive industry?
    Which countries, application areas and use cases will see the highest percentage of Big Data investments in the automotive industry?

Key Findings

The report has the following key findings:

    In 2017, Big Data vendors will pocket over $2.8 Billion from hardware, software and professional services revenues in the automotive industry. These investments are further expected to grow at a CAGR of approximately 12% over the next three years, eventually accounting for over $4 Billion by the end of 2020.
    In a bid to improve customer retention, automotive OEMs are heavily relying on Big Data and analytics to integrate an array of data-driven aftermarket services such as predictive vehicle maintenance, real-time mapping and personalized concierge services.
    In recent years, several prominent partnerships and M&A deals have taken place that highlight the growing importance of Big Data in the automotive industry. For example, tier-1 supplier Delphi recently led an investment round to raise over $25 Million for Otonomo, a startup that has developed a data exchange and marketplace platform for vehicle-generated data.
    Addressing privacy concerns is necessary in order to monetize the swaths of Big Data that will be generated by a growing installed base of connected vehicles and other segments of the automotive industry.

List of Companies Mentioned

    1010data
    Absolutdata
    Accenture
    ACEA (European Automobile Manufacturers’ Association)
    Actian Corporation
    Adaptive Insights
    Advizor Solutions
    AeroSpike
    AFS Technologies
    Alation
    Algorithmia
    Alibaba
    Alliance of Automobile Manufacturers
    Alluxio
    Alphabet
    Alpine Data
    Alteryx
    AMD (Advanced Micro Devices)
    Apixio
    Arcadia Data
    Arimo
    ARM
    ASF (Apache Software Foundation)
    AtScale
    Attivio
    Attunity
    Audi
    Automated Insights
    automotiveMastermind
    AWS (Amazon Web Services)
    Axiomatics
    Ayasdi
    Basho Technologies
    BCG (Boston Consulting Group)
    Bedrock Data
    BetterWorks
    Big Cloud Analytics
    Big Panda
    BigML
    Birst
    Bitam
    Blue Medora
    BlueData Software
    BlueTalon
    BMC Software
    BMW
    BOARD International
    Booz Allen Hamilton
    Boxever
    CACI International
    Cambridge Semantics
    Capgemini
    Cazena
    Centrifuge Systems
    CenturyLink
    Chartio
    Cisco Systems
    Civis Analytics
    ClearStory Data
    Cloudability
    Cloudera
    Clustrix
    CognitiveScale
    Collibra
    Concurrent Computer Corporation
    Confluent
    Contexti
    Continental
    Continuum Analytics
    Couchbase
    CrowdFlower
    CSA (Cloud Security Alliance)
    CSCC (Cloud Standards Customer Council)
    Daimler
    Dash Labs
    Databricks
    DataGravity
    Dataiku
    Datameer
    DataRobot
    DataScience
    DataStax
    DataTorrent
    Datawatch Corporation
    Datos IO
    DDN (DataDirect Networks)
    Decisyon
    Dell EMC
    Dell Technologies
    Deloitte
    Delphi Automotive
    Demandbase
    Denodo Technologies
    Denso Corporation
    Digital Reasoning Systems
    Dimensional Insight
    DMG  (Data Mining Group)
    Dolphin Enterprise Solutions Corporation
    Domino Data Lab
    Domo
    DriveScale
    Dundas Data Visualization
    DXC Technology
    Eligotech
    Engie
    Engineering Group (Engineering Ingegneria Informatica)
    EnterpriseDB
    eQ Technologic
    Ericsson
    EXASOL
    Facebook
    FCA (Fiat Chrysler Automobiles)
    FICO (Fair Isaac Corporation)
    Ford Motor Company
    Fractal Analytics
    FTC (U.S. Federal Trade Commission)
    Fujitsu
    Fuzzy Logix
    Gainsight
    GE (General Electric)
    Geely (Zhejiang Geely Holding Group)
    Glassbeam
    GM (General Motors Company)
    GoodData Corporation
    Google
    Greenwave Systems
    GridGain Systems
    Groupe PSA
    Groupe Renault
    Guavus
    H2O.ai
    HDS (Hitachi Data Systems)
    Hedvig
    HERE
    Honda Motor Company
    Hortonworks
    HPE (Hewlett Packard Enterprise)
    Huawei
    Hyundai Motor Company
    IBM Corporation
    iDashboards
    IEC (International Electrotechnical Commission)
    IEEE (Institute of Electrical and Electronics Engineers)
    Impetus Technologies
    INCITS (InterNational Committee for Information Technology Standards)
    Incorta
    InetSoft Technology Corporation
    Infer
    Infor
    Informatica Corporation
    Information Builders
    Infosys
    Infoworks
    Insightsoftware.com
    InsightSquared
    Intel Corporation
    Interana
    InterSystems Corporation
    ISO (International Organization for Standardization)
    Jaguar Land Rover
    Jedox
    Jethro
    Jinfonet Software
    Juniper Networks
    KALEAO
    KDDI Corporation
    Keen IO
    Kia Motor Corporation
    Kinetica
    KNIME
    Kognitio
    Kyvos Insights
    Lavastorm
    Lexalytics
    Lexmark International
    Lexus
    Linux Foundation
    Logi Analytics
    Longview Solutions
    Looker Data Sciences
    LucidWorks
    Luminoso Technologies
    Lytx
    Maana
    Magento Commerce
    Manthan Software Services
    MapD Technologies
    MapR Technologies
    MariaDB Corporation
    MarkLogic Corporation
    Mathworks
    Mazda Motor Corporation
    MemSQL
    Mercedes-Benz
    METI (Ministry of Economy, Trade and Industry, Japan)
    Metric Insights
    Michelin
    Microsoft Corporation
    MicroStrategy
    Minitab
    MongoDB
    Mu Sigma
    NEC Corporation
    Neo Technology
    NetApp
    Nimbix
    Nissan Motor Company
    NIST (U.S. National Institute of Standards and Technology)
    Nokia
    NTT Data Corporation
    NTT Group
    Numerify
    NuoDB
    Nutonian
    NVIDIA Corporation
    NYC DOT (New York City Department of Transportation)
    OASIS (Organization for the Advancement of Structured Information Standards)
    Oblong Industries
    ODaF (Open Data Foundation)
    ODCA (Open Data Center Alliance)
    ODPi (Open Ecosystem of Big Data)
    OGC (Open Geospatial Consortium)
    OpenText Corporation
    Opera Solutions
    Optimal Plus
    Oracle Corporation
    Otonomo
    Palantir Technologies
    Panorama Software
    Paxata
    Pentaho Corporation
    Pepperdata
    Phocas Software
    Pivotal Software
    Prognoz
    Progress Software Corporation
    PwC (PricewaterhouseCoopers International)
    Pyramid Analytics
    Qlik
    Quantum Corporation
    Qubole
    Rackspace
    Radius Intelligence
    RapidMiner
    Recorded Future
    Red Hat
    Redis Labs
    RedPoint Global
    Reltio
    Robert Bosch
    Rocket Fuel
    Rosenberger
    RStudio
    Ryft Systems
    SAIC Motor Corporation
    Sailthru
    Salesforce.com
    Salient Management Company
    Samsung Group
    SAP
    SAS Institute
    ScaleDB
    ScaleOut Software
    SCIO Health Analytics
    Seagate Technology
    Sinequa
    SiSense
    SnapLogic
    Snowflake Computing
    Software AG
    Splice Machine
    Splunk
    Sqrrl
    Strategy Companion Corporation
    StreamSets
    Striim
    Subaru
    Sumo Logic
    Supermicro (Super Micro Computer)
    Suzuki Motor Corporation
    Syncsort
    SynerScope
    Tableau Software
    Talena
    Talend
    Tamr
    TARGIT
    TCS (Tata Consultancy Services)
    Teradata Corporation
    Tesla
    The Floow
    ThoughtSpot
    THTA (Tokyo Hire-Taxi Association)
    TIBCO Software
    Tidemark
    TM Forum
    Toshiba Corporation
    Toyota Motor Corporation
    TPC (Transaction Processing Performance Council)
    Trifacta
    Uber Technologies
    Unravel Data
    Valens
    VMware
    Volkswagen Group
    VoltDB
    Volvo Cars

Make An Enquiry @ https://www.researchmoz.us/enquiry.php?type=E&repid=1170819

    W3C (World Wide Web Consortium)
    Waterline Data
    Western Digital Corporation
    WiPro
    Workday
    Xevo
    Xplenty
    Yellowfin International
    Yseop
    Zendesk
    Zoomdata
    Zucchetti

For More Information Kindly Contact:

ResearchMoz
Mr. Nachiket Ghumare,
90 State Street, Albany NY, United States - 12207
Tel: +1-518-621-2074
USA-Canada Toll Free: 866-997-4948
Email: sales@researchmoz.us
Follow us on LinkedIn @ http://bit.ly/1TBmnVG
Follow me on : https://marketinfo247.wordpress.com/

No comments:

Post a Comment